Maximum Likelihood Estimation of Parameters in Generalized Functional Linear Model

نویسنده

  • ,
چکیده مقاله:

Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to estimate the model parameters. Finally, in a simulation study and two practical examples, the model and methods presented are implemented.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Likelihood for Generalized Linear Model and Generalized Estimating Equations

The most frequent methods to analyze statistical data are the regression methods, whereby the maximum likelihood method or that of least squares. On the one hand, in the context of the longitudinal data or repeated measurements, these data are often unbalanced; on the other hand, their law of probability are not normal rending the passage to other models with other methods of estimate possible....

متن کامل

Maximum Likelihood Estimation in Generalized Gamma Type Model

In the present paper, the maximum likelihood estimates of the two parameters of a generalized gamma type model have been obtained directly by solving the likelihood equations as well as by reparametrizing the model first and then solving the likelihood equations (as done by Prentice, 1974) for fixed values of the third parameter. It is found that reparametrization does neither reduce the bulk n...

متن کامل

Maximum Likelihood Estimation of a Generalized Threshold Model

The open-loop Threshold Model, proposed by Tong [23], is a piecewise-linear stochastic regression model useful for modeling conditionally normal response time-series data. However, in many applications, the response variable is conditionally non-normal, e.g. Poisson or binomially distributed. We generalize the open-loop Threshold Model by introducing the Generalized Threshold Model (GTM). Speci...

متن کامل

Robust maximum likelihood estimation in the linear model

This paper addresses the problem of maximum likelihood parameter estimation in linear models a!ected by Gaussian noise, whose mean and covariance matrix are uncertain. The proposed estimate maximizes a lower bound on the worst-case (with respect to the uncertainty) likelihood of the measured sample, and is computed solving a semide"nite optimization problem (SDP). The problem of linear robust e...

متن کامل

Maximum likelihood estimation of survival curve parameters.

A maximum likelihood procedure is presented for the estimation of the parameters in a survival curve which is used in the quantitative investigation of cytological damage resulting from ionizing radiation. This estimation procedure is developed under the assumption that the observations are distributed as independent Poisson random variables. In addition, a weighted least squares procedure, whi...

متن کامل

Maximum Likelihood Estimation of Dirichlet Distribution Parameters

The Dirichlet distribution is one that has often been turned to in Bayesian statistical inference as a convenient prior distribution to place over proportional data. To properly motivate its study, we will begin with a simple coin toss example, where the task will be to find a suitable distribution P which summarizes our beliefs about the probability that the toss will result in heads, based on...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 24  شماره 2

صفحات  43- 54

تاریخ انتشار 2020-03

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023